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Abstract

Particle jets are collimated flows of partons which evolve as tree-like structures
through stochastic parton showering and hadronization. The hierarchical nature
of particle jets aligns naturally with hyperbolic space, a non-Euclidean geometry
that captures hierarchy intrinsically. To leverage the benefits of non-Euclidean
geometries, we develop jet analysis in product manifold (PM) spaces, Cartesian
products of constant curvature Riemannian manifolds. We consider particle rep-
resentations as configurable parameters and compare the performance of PM
multilayer perceptron models across several possible representations. We find prod-
uct manifold representations perform equal or better in particle jet classification
than fully Euclidean models of the same latent dimension and the same approximate
number of parameters. These findings reinforce the view of optimizing geometric
representations as a key parameter in maximizing both performance and efficiency.

1 Introduction

Hard QCD scattering processes generate particle jets (jets), collimated flows of partons, which
shower through fragmentation and emission of soft radiation until a final hadronization stage. Parton
fragmentation, the process of high-energy partons splitting into several lower-energy partons, creates
strong hierarchical relationships among the constituents of particle jets. We view this hierarchical
structure as a fundamental feature of particle jets. Hyperbolic spaces provide a natural representation
for hierarchies due to their exponential growth in volume with distance2, however, it is unclear if this
representation is optimal for all features of particle jets. This suggests that distinct sets of features
may be optimally represented in different geometric spaces.

In this work, we present a new representation for particle jets through Cartesian products of constant
curvature Riemannian manifolds which we refer to as product manifolds (PM). Cartesian products
of manifolds enable the simultaneous processing of data representations across multiple manifolds,
offering several unique perspectives on the dataset. Park et. al [11] explored the use of hyperbolic
geometries in the final layers of models for jet analysis, displaying the hierarchies of embedding
spaces. We expand this approach by developing model architectures compatible with jets represented
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2This is understood through comparing the distortion of tree graphs embeddings in different geometric spaces.

Euclidean spaces are unable to achieve comparably low-distortion embeddings compared to hyperbolic spaces
[7, 12].
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in product manifolds throughout the model. In this work, we focus on PM representations exclusively
at the particle-level, embedding individual jet constituents in these spaces. To utilize product manifold
representations, we adapt a multilayer perceptrons (MLPs) to process data in product manifold
representations of particle-level features. We develop highly generalized architectures that allow
seamless use of any product manifold representation and systematic searches for the optimal one.

2 Mathematical Prerequisites

We provide an overview of concepts necessary for this work; refer to [10, 16] further details.

Figure 1: A graphical depiction of a manifold M together with
the tangent space at the point x = 0, denoted T0M and shown in
green. We further illustrate the use of the exponential map, which
for x ∈ T0M takes x → exp0(x) ∈ M, and the logarithmic map,
which for y ∈ M takes y → log0(x) ∈ T0M. A portion of this
image is adapted from [6].

Riemannian Manifolds A d-
dimensional Riemannian mani-
fold (M, g) is a smooth mani-
fold, denoted as Md, together
with a Riemannian metric g
which determines the curvature
κ at each point x ∈ Md. In
this work, we focus on constant
curvature manifolds, where cur-
vature is uniform across the en-
tire space: κ < 0 for hyperbolic
spaces H, κ = 0 for Euclidean
spaces R, and κ > 0 for spher-
ical spaces S. Since Md is a
smooth manifold, each point x ∈
Md is equipped with a tangent
space TxMd ⊆ Rd, providing a
local, linear approximation of the
manifold near x. The exponen-
tial (eq. 1) and logarithmic (eq.
2) maps are employed through-
out the PM machine learning
models presented to map latent
vectors between Euclidean space
and the manifold in use.

expu(·) : TuMd → Md, expu(v) = γu,v(1) = u⊕κ tanκ

(
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)
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logu(·) : Md → TuMd, logu(w) =
2
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Product Spaces As outlined in section 1, we employ a general data representation formed by
combining several distinct manifolds. The product space P is defined by linking manifolds using the
Cartesian product:

P = Md1
κ1

×Md2
κ2

× ...×Mdn
κn

(3)
The total dimension of P is equal to the sum of each individual manifold, which we denote as
d =

∑n
i=1 di. We refer to product space representations as product manifolds (PM).

Representation Models We utilize stereographic projection representations of hyperbolic and
spherical spaces, the Poincaré ball model and the stereographic spherical projection model, respec-
tively. We see these as the natural choice for product manifold approaches as they have a unified
gyrovector formalism developed by Bachmann et. al [1].

Gyrovector Spaces Gyrovector spaces were developed by Ungar for hyperbolic spaces (κ < 0)
[16] and extended to stereographic spherical projections geometries (κ > 0) by Bachmann et. al [1].
When performing calculations in non-Euclidean spaces in this work, Euclidean vector operations
are replaced by gryovector operations, shown in Table 1 which highlights the increased complexity
required for gyrovector operations.
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Euclidean Operations Gyrovector Analogs G./E. FLOPS Ratio

x+ y x⊕κ y =
(1−2κ⟨x,y⟩−κ∥y∥2

2)x+(1+κ∥x∥2
2)y

1−2κ⟨x,y⟩+κ2∥x∥2
2∥y∥2

2
5.1

rx r ⊗κ x = tanκ(r tan
−1
κ (∥x∥2)) x

∥x∥2
3

|x− y| dκ(x, y) = 2 tan−1
κ (∥(−x)⊕κ y∥2) 4.5

Mx M ⊗κ x = tanκ

(
∥Mx∥2

∥x∥2
tan−1

κ (∥x∥2)
)

Mx
∥Mx∥2

2.8

Table 1: We show Euclidean vector operations and their gyrovector analogs. Floating-point operations
per second (FLOPS) ratios are presented for 4D vector/gyrovector operations, bringing an O(n)
FLOP correction.

Gromov-δ Definition of Curvature Gromov-δ hyperbolicity estimates the degree of hierarchical
structure in the dataset [4], where the hyperbolicity δ is chosen such that for any points a,b, c,d in a
δ-hyperbolic, they satisfy,

(a,b)d ≥ min{(b, c)d, (a, c)d} − δ, ∀a,b, c,d ∈ M (4)

(x,y)z =
1

2
(dR(x, z) + dR(y, z)− dR(x, y)) (5)

where (x,y)z is the Gromov product in Eq. 5 for the Euclidean distance metric dR. The Gromov−δ
hyperbolicity is related to the scalar curvature of the manifold through an inverse square relation.

3 Manifold Machine Learning

Our implementation relies upon Geoopt [5], a package for Riemannian optimization in PyTorch.

Fully Connected Layers Ganea et. al [3] proposed utilizing gyrovector operations to develop
fully connected layers applicable for Riemannian manifolds of all curvature. For weights W =
[v1,v2, ...,vn] with vi ∈ Mm

κ , bias b ∈ Mm
κ , and input x ∈ Mn

κ we can calculate the output
y ∈ Mm

κ as:
FC(x;n,m, κ) = W ⊗κ x⊕κ b (6)

where ⊗κ and ⊕κ are the gyrovector matrix multiplication and vector addition, respectively. We will
refer to several fully connected layers in product manifold models as M-MLP (manifold MLP) and
we reserve MLP for the Euclidean MLP.

Activation Functions There are many approaches in the literature to formulating activation func-
tions in non-Euclidean spaces [1, 2, 8, 12]. In our testing we have found that RELU activation
functions in non-Euclidean representations yields minor improvements compared to no activation
functions. This result is unsurprising as activations inject non-linearity, however, non-Euclidean
spaces are already non-linear.

LayerNorm Implementing normalization layers for non-Euclidean machine learning has remained
a challenge [12]. Rigorous methods such as those proposed by [9] rely on iterative calculations
which result in a detrimental bottleneck for deep models. To avoid these challenges, we implement
LayerNorm in the tangent space. This provides a simple method for normalization across all
manifolds considered without significant negative impacts on training or inference times.

Inter-Manifold Attention Sun et al. [15] formulated inter-manifold attention to quantify relation-
ships between data represented across manifolds. Inter-manifold attention probabilities are calculated
for each PM data point using traditional Euclidean attention over the tangent space representation
of each manifold’s points in the product manifold representation. We scale the product manifold
representations by the attention probabilities using the gyrovector scalar multiplication operation.
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4 Product Manifold Multilayer Perceptron (PM-MLP)

The PM-MLP architecture is a simple M-MLP based model architecture, configurable for any
possible product-manifold at the particle-level. A schematic view of the model’s architecture is shown
in Figure 2. Individual manifolds in P are shown as Mdi

κi
in the figure, where the curvature κi is a

learnable parameter.

Jet constituents, each with f features, are mapped to the particle-level product manifold P , processed
through 3-layer M-MLP with ReLU activations, a tangent space LayerNorm (T LN), and an inter-
manifold attention layer (if the particle-level representation is more than a single manifold). The
outputs are mean aggregated in the tangent space and concatenated, forming a jet-level latent vector,
which is processed in Euclidean space with a 3-layer MLP with ReLU activations and a final SoftMax
activation for predictions. We refer to PM-MLP models by their particle-level representation
P = Md1 × ...×Mdn .

Figure 2: A schematic of the PM-MLP model

5 Improving Performance in Binary Jet Tagging with PM-MLP Models

Dataset We utilize the open source JETCLASS3 dataset [13, 14]. The JETCLASS dataset con-
sists of ten classes of simulated jets, represented as point clouds of jet constituents. Model in-
puts are the 20 highest pT particles4 in each jet with particle features as kinematic information
(∆η,∆ϕ, log pT , logE) and particle identification5. We estimate the hierarchical structure of particle
features for each class through the Gromov-δ hyperbolicity and find the H → 4q to be the most
hierarchical, while t → bqq′ is the least hierarchical.

Training Details We train all PM-MLP models over ten initializations, each with 50 epochs and a
batch size of 1024 samples, and select the best performing model for comparison. Training (5M),
validation (200k), and test (200k) datasets are equal distribution of the signal and QCD background.
We use the Riemannian Adam optimizer[5] with weight decay of 5e-4, β1 = 0.9, and β2 = 0.98. In
the case of fully Euclidean models, Riemannian Adam is equivalent to the Adam optimizer. The
training uses a cosine annealing learning rate scheduler with an initial learning rate of 1e-3 which
remains constant for 30% of the iterations and then decays exponentially to 1% of the initial learning
rate, following the training approach of [13]. Hyperbolic and spherical spaces are initialized with
κ = −1.2 and κ = 1, respectively. For repeated geometries, we scale the initial curvatures to avoid
redundancy. For example, in H d

2 ×H d
2 , one manifold is initialized with κ = −1.2 and the other with

κ = −2.4. All models are trained on a single A100 GPU.

Results We compare binary classification performance for H → 4q vs QCD and t → bqq′ vs QCD
across several particle-level representations with total dimension d = [2, 4, 8, 16, 32]. We do not
present results for fully spherical representations as they were found to be detrimental to performance.
We include R d

2 × R d
2 , which is geometrically equivalent to Rd, to emphasize the impact of parallel

representations and inter-manifold attention. Model sizes in this experiment range from 121 to 1.8k
tunable parameters. We report classification accuracy on the test dataset and quantify uncertainty
through the bootstrapped test accuracy using 50 samples with 12.5% of the test dataset per sample.
Results are shown in Figure 3 for H → 4q vs QCD and t → bqq′ vs QCD on the left and right,
respectively. To analyze the structure of these embeddings, we present the tangent space corner plots
of particle embeddings for PM-MLP models with R4 and H4 geometries in Appendix A. At this

3The dataset can be found here: https://zenodo.org/records/6619768
4We restrict our analysis to a small set of particles due to the use of compact models and the inability to mask

zero-padded particle inputs.
5Further details are listed in Table 2 of [13]
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point, we cannot draft definitive conclusions from these structure of these particle embedding and we
will work to better understand these space in future work.

For highly hierarchical classes (H → 4q), hyperbolic representations outperforms Euclidean repre-
sentations at dimensions 2 and 4, while achieving comparable performance at higher dimensions. For
weakly hierarchical classes (t → bqq′), the performance of PM representations is generally within
the uncertainty range of fully Euclidean representations. This performance aligns with expectations
based on the hierarchical structure inherent in the dataset, illustrating that the Gromov-δ framework
effectively underscores the advantages of hyperbolic representations in enhancing model performance.
In both processes, combining Euclidean and non-Euclidean representations does not yield perfor-
mance gains for PM-MLP models. This suggests that low-parameter model and simple architectures
may not be able to effectively leverage the additional perspectives through parallel representations.
This motivates future explorations of PM representations in large transformer models.

(a) Accuracy for H → 4q (b) AUC for H → 4q

(c) Accuracy t → bqq′ (d) AUC t → bqq′

Figure 3: PM representations bring performance gains in highly hierarchical signals (H → 4q) and
approximately equal performance in weakly hierarchical signals (t → bqq′). For highly hierarchical
signals, fully hyperbolic representations H (shown in green) brings the largest gains.

6 Conclusion

We find that PM representations at the particle-level can bring gains in jet classification tasks with no
impact on total dimension and minimal adjustments to model parameters and FLOPS. Furthermore,
these gains follow the predicted hierarchical structure by the Gromov-δ estimation. These results
showcase the potential for PM representations as a new, highly tunable representation for particle
jets in physics analysis. In future works, we will explore embedding jet latent representations in PM
spaces and more complex model architectures through the PM-Transformer model.
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A Particle-Level Embedding Visualizations

A.1 H → 4q Embeddings

(a) T0H4 corner plot colored by particle type (b) T0H4 corner plot colored by log pT

(c) R4 corner plot colored by particle type (d) R4 corner plot colored by log pT

Figure 4: Corner plots for the 4D PM-MLP models for the H → 4q process employing R4 and
H4 geometries. For H4, we plot results in the tangent space T0H4. We show corner plots for both
particle-level embedding geometries for the constituents of 10k jets from the test dataset. We show
the particle-level embeddings colored by both particle-type and log pT , normalized to max 1.

7



A.2 t → bqq′ Embeddings

(a) T0H4 corner plot colored by particle type (b) T0H4 corner plot colored by log pT

(c) R4 corner plot colored by particle type (d) R4 corner plot colored by log pT

Figure 5: Corner plots for the 4D PM-MLP models for the t → bqq′ process employing R4 and
H4 geometries. For H4, we plot results in the tangent space T0H4. We show corner plots for both
particle-level embedding geometries for the constituents of 10k jets from the test dataset. We show
the particle-level embeddings colored by both particle-type and log pT , normalized to max 1.
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